Code No.: 12413

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (E.C.E) II-Semester Main & Backlog Examinations, September-2022 Basic Circuit Analysis

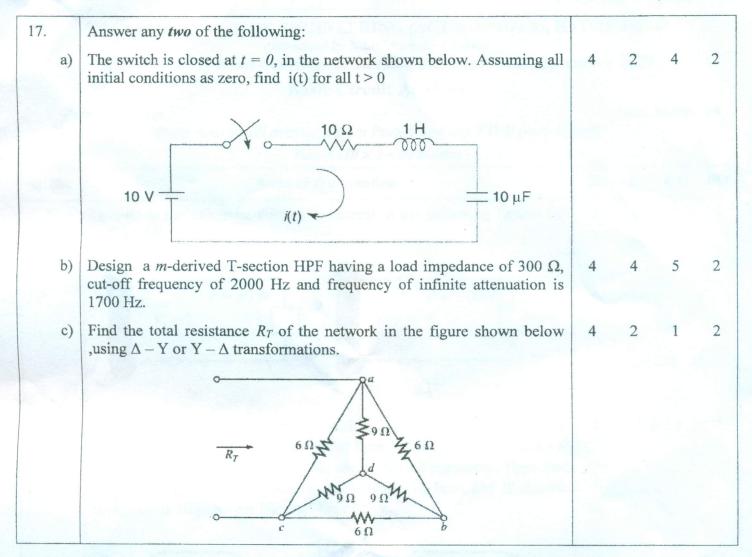
Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

	$Part-A (10 \times 2 = 20 Marks)$				
Q. No.	Stem of the question	M	L	СО	PO
1.	Determine the unknown voltage or current in the following figures (a) and (b)	2	2	1	1
	$I = 2 \text{ A}$ $- P = 40 \text{ W}$ $V_1 = ?$ $V_1 = 10 \text{ V}$ $V_1 = 10 \text{ V}$				
	(a) (b) $I = ?$				
2.	An electroplating apparatus uses electrical current to coat material with metals such as copper or silver. In the figure below, a 220 V electrical DC source supplies 10 A DC to the electroplating apparatus. Then find the cost to operate the apparatus for a single 12 hour day if electric energy costs 10 paisa per kilowatt-hour (kWh)	2	2	1	1
	Electrical 220 V Electroplating Apparatus				
3.	Find the compensation voltage that is required when R is changed from 4 Ω to 2 Ω	2	2	2	1
f	10 $R \geqslant 80$				3. 2
		50 TO		d d	Broger green


4.	Find I_x using Tellegen's theorem. Assume boxes numbered are circuit	2	3	2	1
	elements.				
	1A 2A				
	+				
	10 V 1 15 V				
	1 25 V 1 5 A				
	2 15V + 10V				
	A S = 5				
5.	What do you mean by Zero input response (ZIR) and Zero state response (ZSR).	2	1	4	1
6.	Find the current I_L and the voltage V_C in steady state, for the circuit shown in the figure	2	3	4	2
	R_1 + V_C -				
	2Ω				
	plies 10 A Deno the encountry resigns with the				
	$E = 10 \text{ V}$ $R_3 \lesssim 4 \Omega$				
	$R_2 \geqslant 3 \Omega$				
	=				
7.	Find the quality factor (Q) of the circuit given below.	2	2	3	1
	this the quality factor (2) of the cheart given below.		4	3	1
	$R = 6\Omega X_L = 480 \Omega$				
	$E = 10 \text{ V} \angle 0^{\circ} $ $X_C = 480 \Omega$				
	E = 10 V 20				
	T				
8.	Define propagation constant and characteristic impedance of a filter	2	1	5	1
9.	Write the condition for symmetry and reciprocity of a two port network in terms of transmission parameters.	2	1	6	1
10.	Draw the equivalent circuit of the two-port network in terms of h-parameters.	2	1	6	1

:: 2 ::

	$Part-B (5 \times 8Marks = 40 Marks)$	ni o	dom		144
11. a)	Find i_x from the circuit using the mesh analysis	4	2	1	2
	$ \begin{array}{c c} 4\Omega \\ 4\Omega \\ 4\Omega \\ 4\Omega \end{array} $ $ \begin{array}{c} 1A \\ 2\Omega \\ 4\Omega \end{array} $	o odz Kumir			
b)	Find the voltage across the 5 Ω resistor in the network shown in below figure using the Nodal Analysis.	4	2	1	2
	$\begin{array}{c c} \hline 2 A & \uparrow \\ \hline \end{array}$ $\begin{array}{c} \hline 50 \\ \hline \end{array}$ $\begin{array}{c} \hline \end{array}$				
12. a)	Two sets of measurements are made on a linear passive resistive network in Fig.(a) and Fig.(b). Find the current through the 2- Ω resistor by using Reciprocity theorem.	4	3	2	3
b)	Find V_o in the circuit shown below by using Super-position theorem 8Ω $V_o = 0.2 \text{ F}$	4	2	2	2
13. a)	The switch in the circuit shown in figure below has been in position 'a' for a long time. At $t=0$, the switch is moved to position 'b'. Then i) Find the expression for $v_C(t)$ when $t \ge 0$ ii) Determine the time after which voltage across capacitor becomes zero, when switch is in position 'b'. $ \frac{400 \text{ k}\Omega}{t} = 0 $ $ \frac{400 \text{ k}\Omega}{t} = 0 $ $ \frac{60 \Omega}{t} = 40 \text{ V} = 0 $ $ \frac{400 \text{ k}\Omega}{t} = 0 $ $ \frac{60 \Omega}{t} = 40 \text{ V} = 0 $	4	3	4	2

b)	The switch in the circuit shown in figure below has been in position 'a' for a long time. At $t = 0$, the switch moves from position 'a' to position 'b'.	4	3	4	2
	i) Find the expression for $i(t)$ for $t \ge 0$. ii) Determine $i(t)$ at $t=0.2$ s.				
	2Ω b a				
	$= 24 \text{ V}$ $= 10 \Omega 8 \text{ A}$				
14. a)	For a parallel RLC circuit, derive the expressions for resonant frequency, quality factor and bandwidth.	4	1	3	2
b)	Design a constant-k, T section low-pass filter for cut-off frequency of 2.5 kHz and nominal load impedance of 700 Ω .	4	4	5	3
15. a)	Find the Z – parameters of the given two-port network	4	3	6	2
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	V_1 V_2 V_2 V_3 V_4 V_2 V_2				
b)	Obtain the over-all Y-parameters, when 2 two-port networks are connected parallel.	4	1	6	1
16. a)	Determine the value of R _L to deliver maximum power to load and power delivered in the circuit shown in figure.	4	3	2	2
	+ V ₂				
	$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$				
	CERCHENSMAN AND RESTOR SHALL BE THE BURNESS OF STREET	di n		*	
b)	Determine the Thévenin and Norton equivalents of the circuit represented in the figure below from the perspective of the open terminals.	4	2	2	2
	terminals.				
	+				
	$ 10V_x $ $ \geq 21 \Omega V_x $				
	ō				

Code No.: 12413

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	20%
ii)	Blooms Taxonomy Level – 2	40%
iii)	Blooms Taxonomy Level – 3 & 4	40%
